welcome: please sign in

Upload page content

You can upload content for the page named below. If you change the page name, you can also upload content for another page. If the page name is empty, we derive the page name from the file name.

File to load page content from
Page name
Comment

location: AbstractGalis

NDFA-based inexact pattern-matching through local optimum

Darius Galis

Abstract:

Pattern-matching techniques are one of the most common ways of identifying the presence of sequences in a data pool, with different types of encodings being possible for different applications in real-world uses. The fields that are employing such techniques range from bioinformatics, forensic analysis, malware detection, to compiler implementation and the matching of text. This presentation emphasizes an innovative approach for inexact pattern-matching using an NDFA automaton, derived and constructed based on the DFA-based Aho-Corasick approach, for tackling trending issues like detecting polymorphic malware behavior and the detection of antimicrobial resistance genes. Our approach focuses on the detection of similar subsequences by employing a diverse set of metrics that compute a local optimum, applied to the existing data with the help of a sliding window concept. We discuss the existing approaches, present our idea for our innovative methodology, as well as compare it with the traditional concepts in real-world use-cases. We also draw conclusions as to potential further applications of our proposed approach in other various research niches and outline the benefits and drawbacks of such approaches.