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Introducing myself
e PhD in Computer Science (Sept. 2014 — Dec. 2016)
" Metric Properties of Large Graphs'

under the guidance of David Coudert

team-project COATI (Université Céte d'Azur, Inria, CNRS, 13S, France)

e Research visits here and there
Columbia University, New York (with Prof. Chaintreau and Geambasu)

Universidad Adolfo Ibafiez and Universidad de Chile, Santiago.

2/ 42



Some motivations for my research
Scalability in Network Algorithms

Growing size of communication networks

Social networks (Facebook > 1.79 billion users)

Data Centers (Microsoft > 1 million servers)

the Internet (> 55811 Autonomous Systems)

“Efficient” algorithms on these graphs?

petyremtal — quasi-linear time
gtradratie — (sub)linear space

need for revisiting textbook (polynomial) graph algorithms J
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Some motivations for my research (cont'd)
Privacy in Network Algorithms

Raise of privacy concerns online

B CONSUMER
CONCERN

Online discrimination (Machine Learning,
heuristics)

20 87% USING SOCAL NETWORKS
A 5% smncoune . . .
o Violation of data policies (ex: Google App
80 1 wewe. EDUCALION)
.
differential privacy: preventing data leakage
Web's transparency: monitoring data use
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Research topics

Information propagation in networks =—> combinatorial problems on graphs

Finer-grained complexity analysis of graph problems

NP-hardness, complexity in P, parallel complexity, query complexity,

Metric tree-likeness in graphs

(with COATI team)
@ Study of geometric properties of the (shortest) path distribution

@ Computation of related parameters (hyperbolicity, treelength,
treebreadth, treewidth)

algorithmic graph theory
Privacy at large scale in social graphs

(with Social Networks lab, Columbia)
@ Solution concepts for dynamics of communities
@ Ad Targeting Identification

game and learning theory
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Online Social Networks




Reasons for studying OSNs

Increasing social activity

Number of Users on Popular Social Networking Sites

Real-life applications:

@ sociology
@ statistics

@ economy, advertising

Monthly Visits on Top Social Networking Websites @ priva cy

(source: Go-Gulf.com, 2012)

Graph theoretical framework
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In this talk: focus on Twitter

e ~ 100M login/day

@ in the Top 10 most visited websites

® o 3 largest social media (?)
twitter j

Twitter users between 2006 and 2012, by M. Gabielkov
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Objectives

Design and Analysis of a Random graph model for Twitter

Some motivations:

@ better knowledge of the structure

@ predictive studies

o Simulation + Testing for algorithms
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Related work: experiments on Twitter (1/2)

Conversation graph vs. Graph of the followers

[Cogan et al., Reconstruction and analysis of Twitter conversation graphs, '12]

In this talk: graph of the followers

Unidirectional relationships (“I'm

interested in you”) @

@ Follower: A follows B;

@ Following: C is followed by B; @
@ Bidirectional: B and D follow each e @
other.
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Related work: experiments on Twitter (2/2)

[Gabielkov et al.,’14]
e "Full" graph obtained by crawling

— 505 million accounts interconnected by 23 billion links!

e "Macro structure” (dec. in strongly connected components)
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LSC: 51% of users, 97% of following, 98% of followers.
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Related work: undirected random model for networks

e Erdos-Rényi: “typical” graph
each edge independently with probability p
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Related work: undirected random model for networks

e Erdos-Rényi: “typical” graph
each edge independently with probability p

e Preferential attachment paradigm: "the rich gets richer”
- growing network (node + edge events)

- probability for a user to increase her degree is proportional to her current
degree

[Barabasi-Albert, Bianconi-Barabasi, Watts-Strogatz, Chung-Lu, Krioukov et al., ...]
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Related work: undirected random model for networks

e Erdos-Rényi: “typical” graph
each edge independently with probability p

e Preferential attachment paradigm: "the rich gets richer”
- growing network (node + edge events)

- probability for a user to increase her degree is proportional to her current
degree

[Barabasi-Albert, Bianconi-Barabasi, Watts-Strogatz, Chung-Lu, Krioukov et al., ...]

Power-law:
Pr,[deg(v) = k] = ©(k™?)

12/ 42



Related work: directed random model for networks

Few existing models and studies for digraphs

e "directed Barabasi-Albert” (node event + m outgoing arcs)

o Bollobas et al.: node events + 2 types of arc events (ingoing or
outgoing arc)
Remark: much more difficult to analyse!

@ RMAT [Chakrabarti et al., '04]: fixed number of vertices and works with
adjacency matrices
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Our results

e An experimental study of the degree(s) distribution in the Twitter graph

e Design of a new random digraph model

e Analysis of the model

@ experimental (comparisons with Twitter)

@ theoretical: new techniques based on Markov processes
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Experiments on the Twitter graph (1/4)

Degree(s) distribution in the LSC

In-degree, Out-degree, Bidirectional follow Power-law distribution

aaaaaaaaaaaaaaaaa

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

in-degree out-degree bidirectional
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Experiments on the Twitter graph (2/4)
Linear correlations ? (Pearson’s coefficient)

no OUT-IN correlation

In Degree
@
mean value

out Degree

Pearson coefficient ~ 0.1488
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Experiments on the Twitter graph (3/4)

Linear correlations ? (Pearson’s coefficient)

no IN-BI correlation

12

10

Bidirectional Degree
mean value

In Degree

Pearson coefficient ~ 0.1467
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Experiments on the Twitter graph (4/4)

Linear correlations ? (Pearson’s coefficient)

strong OUT-BI correlation

12

10

@
mean value

Bidirectional Degree

Op o oo cosssssmess

2 4 6 B
Out Degree

Pearson coefficient ~ 0.9556
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Limitations of existing models

Experiments vs. Bollobas et al. model

e The number of bidirectional arcs is high (theory predicts it should
drop to zero)

e Strong positive correlation between out-degree and bidirectional degree
(degrees should be "almost independent”)

—> need for a new model that better accounts the specificities of
Twitter
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Modelling: first attempt

Problem: number of bidirectional arcs is non vanishing (it should tend to
zero)

Proposed solution: merge a directed random model with an undirected
random model

undirected edges «— bidirectional arcs

Issue: no correlation between out-degree and bidirectional degree !!
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Modelling: second attempt

Modify [Bollobas et al., 03] for our needs.

1) initial digraph D(to);

2) iterate, for every time step t > tp:
@ addition of a new vertex with probability o (outgoing arc);
@ addition of a new arc with probability 1 — «;

o the new arc is bidirectional with probability .
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Examples

Initial digraph D(tp)

node=5, edges=9 (2 bidirectional) IN=1
our=2 IN=2

IN=2
ouT=1

ouT=2
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Examples

(A) Node event

node=5, edges=9 (2 bidirectional) IN
Ol

]
(i

2 IN=2
out=1 Pr=2/9

O

Pr=2/9

IN=2 Pr=2/9
ouT=2

oz
i
I~
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Examples

(A) Node event: add an out-going arc (with tail chosen w.r.t out-degree)

node=5, edges=9 (2 bidirectional) IN
Ol

]
(i

2 IN=2

Pr=1/9 our=1__ Pr=2/9

IN=3
ouT=2

IN=2
ouT=1
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Examples

New digraph D(tp + 1).

node=6, edges=10 (2 bidirectional) IN=1
our=2 IN=2

IN=3
ouT=2

IN=2
ouT=1
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Examples

(B) Node event

node=6, edges=10 (2 bidirectional) IN=1

ouT=2 IN=2

Pr=2/10
Pr=1/10

Pr=3/10

Pr=1/10

Pr=2/10

Pr=1/10

IN=3
ouT=2

IN=2
ouT=1
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Examples

(B) Node event: add a bidirectional arc (with 2" end chosen w.r.t
out-degree)

Il
)|

node=6, edges=10 (2 bidirectional) IN
Ol 2 IN=2

ouT=1
Pr=1/10

Pr=3/10
IN=2
ouT=3

Pr=1/10

Pr=2/10

Pr=1/10
IN=3

ouT=2 IN=2

ouT=1
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Examples

New digraph D(tp + 2).

node=7, edges=12 (3 bidirectional) IN=2
our=3 IN=2

O ouT=1

IN=1

ouT=1

IN=3
ouT=2

IN=2
ouT=1
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Examples

(C) Arc event: choose head w.r.t. in-degree

node=7, edges=12 (3 bidirectional) IN=2
our=3 IN=2

Pr=2/12

Pr=2/12

Pr=1/12
Pr=2/12
IN=2
ouT=3

Pr=0/12

ouT=1

Pr=2/12

IN=3
ouT=2

IN=2
ouT=1
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Examples
(C) Arc event: choose tail w.r.t. out-degree

node=7, edges=12 (3 bidirectional) IN=2
our=3 IN=2 Pr=1/12

Pr=1/12 Pr=3/12
Pr=3/12
IN=2
ouT=3
Pr=1/12

Pr=1/12

Pr=2/12

IN=3
— IN=2
our=2 ouT=1

30 / 42



Examples

(D) Arc event: choose ends w.r.t. out-degree

node=7, edges=13 (4 bidirectional) IN=2
ouT=3 IN=2

Pr=1/13 Pr=1/13

Pr=3/13
IN=3
ouT=3

Pr=1/13

Pr=1/13

IN=3

ouT=3 IN=2

ouT=1
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Degree Analysis

Computation of x; j «(t) = number of vertices, at the time step t > to,
with:

in-degree i/ + k;
out-degree j + k;
bi-degree k.

Exact ? Asymptotic ?
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Old school computations

borrow from [Bollobas et al, "03].

recurrence equation:

Elxi j(t +1) | D(t)] = xi «(t)

+e(t)(ig”)n(t) (I 4+ k=14 0in) - xi—1jk(t) — (I + k + 3in) - xij k(£))
+e((i)—+7g§u1tfn?1) (G + k — 1+ bout) - Xtjork() — U+ K + Sour) - xi4(2))
+ 24 (G + k=14 dout) - Xij—1,k(t) = U + k + dout) - xij k(1))

e(t) + dout - n(t)
e(t) =t, n(t) = ©(t) (Chernoff)
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Old school computations (cont'd)

borrow from [Bollobas et al, "03].
Case | — oo, J, k fixed

by triple induction on i, k:

i)/t = @y (i (FFar A0 25)

Analysis fails in the other cases!
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Relationship with Markov processes

(t+1) - Xije(t+1) =1t Xiji(t)

1(1_0;) (i + k= 1+ 6m) Xi—1jk(t) — (i + k+ i) - % j&(2))

W (G4 k =1+ out) - Xijo1.k(t) — U+ k + Sout) - Xij k(1))
m (U+ k=14 60ut) - Xij—1,k(t) — (U + Kk + dout) - Xij k(1))

+t~o)

_|_
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Relationship with Markov processes

(t + 1) . )_<,'J,k(t+ 1) =t- )_(i,j,k(t)

(1—=7) . - 5

+1 ¥ oo ((I +k—-—1+ 5,’,,) . X,'_1’J'7k(t) — (I + k + (5,',,) . X;’J',k(t))
1-— 1 . _
N0 (k1 Sue)  Ryork(®) — G+ Gour) - %g(6)
1 + Cl(sout

+M (G+k =1+ 6out) - Xij—1.k(t) = ( + k + bout) - Xiji(t))

1 —+ deout ' ’ 15
+t~o)
transitions

e (i,j, k) — (i+1,j, k) with rate 1(+ 1) ~(i + k + din)

o (i,j, k) — (i,j + 1, k) with rate %Q + k + Sout)

o (i,j, k) = (i,j, k+ 1) with rate 1J(r2a§&) U+ k+ dout)

rebirth process (new nodes)
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Main tool

ﬁ
X(t) = (xijk(t))ijk
Q@ rate matrix

(t+1)-[X(t+1) - X(O)] = Q- X(£) + 3 (¢-°W)

If the Markov process admits a stationary distribution 1 then a.a.s.
X(t) >N
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Sketch of proof

(t+1) [X(t+1)— X(8)] = Q- X(t) + T (¢~

continuum theory [Barabasi-Bianconi,’00]

Reinterpret:

[7(t+1)—7(t)]:(t+1) R(t+1)

d(X (1))
dt

7(15
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Sketch of proof (cont'd)

(t+1)- d(X(t)) _ Q- X(1)

Pq(t) = Pr[ in state (/,/, k) at time t]

A = Q- Pa(t)
PQ(t) — I

X(t) = Po(In(t + 1)) — N
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Applications to Preferential attachment models

e 1-dimensional (undirected graphs)
Ex: Chung-Lu model.

(F(i+1)+1)Siy1 = F(i)S(i)

- Existence of stationnary distribution: Zj %(J) diverges;

- if F(i) = ["dt/f(t) then:
Si = O(exp[—F()]/f(i))

e 2-dimensional (directed graphs) — exact closed-form formula

Bollobas et al.

e 3-dimensional (our case): reduction to 2-dimensional case
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Conclusion

e First study of the degree(s) distribution on Twitter

e Design and Analysis of a new random digraph model

e Automation through Markov processes
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Perspectives

On-going work !

e New applications of our approach ?

e Extend study to other properties of Twitter 7
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Mersi!

9

Intrebare



