Revisiting Preferential Attachment with applications to Twitter

Guillaume Ducoffe, Frédéric Giroire, Stéphane Pérennès, Stefano Ponziani

Université Côte d'Azur, Inria, CNRS, I3S, France
April $26^{\text {th }}, 2017$

Introducing myself

- PhD in Computer Science (Sept. 2014 - Dec. 2016)
"Metric Properties of Large Graphs"
under the guidance of David Coudert
team-project COATI (Université Côte d'Azur, Inria, CNRS, I3S, France)

- Research visits here and there

Columbia University, New York (with Prof. Chaintreau and Geambasu)
Universidad Adolfo Ibañez and Universidad de Chile, Santiago.

Some motivations for my research

Scalability in Network Algorithms

Growing size of communication networks

> Social networks (Facebook ≥ 1.79 billion users)
> Data Centers (Microsoft ≥ 1 million servers)
> the Internet (≥ 55811 Autonomous Systems)

"Efficient" algorithms on these graphs?

$$
\begin{aligned}
& \text { polynomial } \rightarrow \text { quasi-linear time } \\
& \text { quadratic } \rightarrow \text { (sub)linear space }
\end{aligned}
$$

need for revisiting textbook (polynomial) graph algorithms

Some motivations for my research (cont'd)

Privacy in Network Algorithms

Raise of privacy concerns online

Online discrimination (Machine Learning, heuristics)

Violation of data policies (ex: Google App Education)
differential privacy: preventing data leakage
Web's transparency: monitoring data use

Research topics

Information propagation in networks \Longrightarrow combinatorial problems on graphs

Finer-grained complexity analysis of graph problems

NP-hardness, complexity in P, parallel complexity, query complexity, ...

Metric tree-likeness in graphs

- Study of geometric properties of the (shortest) path distribution
- Computation of related parameters (hyperbolicity, treelength, treebreadth, treewidth)
algorithmic graph theory
Privacy at large scale in social graphs
(with Social Networks lab, Columbia)
- Solution concepts for dynamics of communities
- Ad Targeting Identification

Online Social Networks

Reasons for studying OSNs

Increasing social activity

Number of Users on Popular Social Networking Sites

Real-life applications:

- sociology
- statistics
- economy, advertising
- privacy
(source: Go-Gulf.com, 2012)

Graph theoretical framework

In this talk: focus on Twitter

- ~ $100 M \operatorname{login} /$ day
- in the Top 10 most visited websites
- $3^{\text {rd }}$ largest social media (?)

Objectives

Design and Analysis of a Random graph model for Twitter

Some motivations:

- better knowledge of the structure
- predictive studies
- Simulation + Testing for algorithms

Related work: experiments on Twitter (1/2)

Conversation graph vs. Graph of the followers

[Cogan et al., Reconstruction and analysis of Twitter conversation graphs, '12]

In this talk: graph of the followers

Unidirectional relationships ("I'm interested in you")

- Follower: A follows B;
- Following: C is followed by B;
- Bidirectional: B and D follow each other.

Related work: experiments on Twitter (2/2)

[Gabielkov et al.,'14]

- "Full" graph obtained by crawling
$\longrightarrow 505$ million accounts interconnected by 23 billion links!
- "Macro structure" (dec. in strongly connected components)

LSC: 51\% of users, $\mathbf{9 7 \%}$ of following, $\mathbf{9 8 \%}$ of followers.

Related work: undirected random model for networks

- Erdös-Rényi: "typical" graph each edge independently with probability p

Related work: undirected random model for networks

- Erdös-Rényi: "typical" graph each edge independently with probability p
- Preferential attachment paradigm: "the rich gets richer"
- growing network (node + edge events)
- probability for a user to increase her degree is proportional to her current degree
[Barábasi-Albert, Bianconi-Barábasi, Watts-Strogatz, Chung-Lu, Krioukov et al., ...]

Related work: undirected random model for networks

- Erdös-Rényi: "typical" graph each edge independently with probability p
- Preferential attachment paradigm: "the rich gets richer"
- growing network (node + edge events)
- probability for a user to increase her degree is proportional to her current degree
[Barábasi-Albert, Bianconi-Barábasi, Watts-Strogatz, Chung-Lu, Krioukov et al., ...]

Power-law:

$$
\operatorname{Pr}_{v}[\operatorname{deg}(v)=k]=\Theta\left(k^{-a}\right)
$$

Related work: directed random model for networks

Few existing models and studies for digraphs

- "directed Barábasi-Albert" (node event + m outgoing arcs)
- Bollobás et al.: node events +2 types of arc events (ingoing or outgoing arc) Remark: much more difficult to analyse!
- RMAT [Chakrabarti et al., '04]: fixed number of vertices and works with adjacency matrices

Our results

- An experimental study of the degree(s) distribution in the Twitter graph
- Design of a new random digraph model
- Analysis of the model
- experimental (comparisons with Twitter)
- theoretical: new techniques based on Markov processes

Experiments on the Twitter graph (1/4)

Degree(s) distribution in the LSC

In-degree, Out-degree, Bidirectional follow Power-law distribution

out-degree

bidirectional

Experiments on the Twitter graph (2/4)

Linear correlations ? (Pearson's coefficient)
no OUT-IN correlation

Pearson coefficient ~ 0.1488

Experiments on the Twitter graph (3/4)

Linear correlations ? (Pearson's coefficient)
no IN -BI correlation

Pearson coefficient $\boldsymbol{\sim} 0.1467$

Experiments on the Twitter graph (4/4)

Linear correlations ? (Pearson's coefficient)
strong OUT-BI correlation

Pearson coefficient ~ 0.9556

Limitations of existing models

Experiments vs. Bollobás et al. model

- The number of bidirectional arcs is high (theory predicts it should drop to zero)
- Strong positive correlation between out-degree and bidirectional degree (degrees should be "almost independent")
\Longrightarrow need for a new model that better accounts the specificities of Twitter

Modelling: first attempt

Problem: number of bidirectional arcs is non vanishing (it should tend to zero)

Proposed solution: merge a directed random model with an undirected random model
undirected edges \longleftrightarrow bidirectional arcs

Issue: no correlation between out-degree and bidirectional degree !!

Modelling: second attempt

Modify [Bollobás et al., '03] for our needs.

1) initial digraph $D\left(t_{0}\right)$;
2) iterate, for every time step $t \geq t_{0}$:

- addition of a new vertex with probability α (outgoing arc);
- addition of a new arc with probability $1-\alpha$;
- the new arc is bidirectional with probability γ.

Examples

Initial digraph $D\left(t_{0}\right)$

Examples

(A) Node event

Examples

(A) Node event: add an out-going arc (with tail chosen w.r.t out-degree)

Examples

New digraph $D\left(t_{0}+1\right)$.

Examples

(B) Node event

Examples

(B) Node event: add a bidirectional arc (with $2^{\text {nd }}$ end chosen w.r.t out-degree)

Examples

New digraph $D\left(t_{0}+2\right)$.

Examples

(C) Arc event: choose head w.r.t. in-degree

Examples

(C) Arc event: choose tail w.r.t. out-degree

Examples

(D) Arc event: choose ends w.r.t. out-degree

Degree Analysis

Computation of $x_{i, j, k}(t)=$ number of vertices, at the time step $t \geq t_{0}$, with:

```
in-degree i}+k
```

out-degree $j+k$;
bi-degree k.

Exact ? Asymptotic ?

Old school computations

 borrow from [Bollobás et al, '03].recurrence equation:

$$
\begin{aligned}
& \mathbb{E}\left[x_{i, j, k}(t+1) \mid D(t)\right]=x_{i, j, k}(t) \\
& +\frac{(1-\gamma)}{e(t)+\delta_{\text {in }} \cdot n(t)}\left(\left(i+k-1+\delta_{\text {in }}\right) \cdot x_{i-1, j, k}(t)-\left(i+k+\delta_{\text {in }}\right) \cdot x_{i, j, k}(t)\right) \\
& +\frac{(1-\gamma)(1-\alpha)}{e(t)+\delta_{\text {out }} \cdot n(t)}\left(\left(j+k-1+\delta_{\text {out }}\right) \cdot x_{i, j-1, k}(t)-\left(j+k+\delta_{\text {out }}\right) \cdot x_{i, j, k}(t)\right) \\
& +\frac{\gamma(2-\alpha)}{e(t)+\delta_{\text {out }} \cdot n(t)}\left(\left(j+k-1+\delta_{\text {out }}\right) \cdot x_{i, j-1, k}(t)-\left(j+k+\delta_{\text {out }}\right) \cdot x_{i, j, k}(t)\right) \\
& e(t)=t, n(t)=\Theta(t)(\text { Chernoff })
\end{aligned}
$$

Old school computations (cont'd)

borrow from [Bollobás et al, '03].

Case $i \rightarrow \infty, j, k$ fixed
by triple induction on i, j, k :

$$
x_{i, j, k}(t) / t=\Theta_{j, k}\left(i^{-\left(1+\frac{1}{c_{1}}+\left(1+\delta_{\text {out }}\right)\left(\frac{c_{2}+c_{3}}{c_{1}}\right)\right)}\right)
$$

Analysis fails in the other cases!

Relationship with Markov processes

$$
\begin{aligned}
& (t+1) \cdot \bar{x}_{i, j, k}(t+1)=t \cdot \bar{x}_{i, j, k}(t) \\
& +\frac{(1-\gamma)}{1+\alpha \delta_{\text {in }}}\left(\left(i+k-1+\delta_{\text {in }}\right) \cdot \bar{x}_{i-1, j, k}(t)-\left(i+k+\delta_{\text {in }}\right) \cdot \bar{x}_{i, j, k}(t)\right) \\
& +\frac{(1-\gamma)(1-\alpha)}{1+\alpha \delta_{\text {out }}}\left(\left(j+k-1+\delta_{\text {out }}\right) \cdot \bar{x}_{i, j-1, k}(t)-\left(j+k+\delta_{\text {out }}\right) \cdot \bar{x}_{i, j, k}(t)\right) \\
& +\frac{\gamma(2-\alpha)}{1+\alpha \delta_{\text {out }}}\left(\left(j+k-1+\delta_{\text {out }}\right) \cdot \bar{x}_{i, j-1, k}(t)-\left(j+k+\delta_{\text {out }}\right) \cdot \bar{x}_{i, j, k}(t)\right) \\
& +t^{-\mathcal{O}(1)}
\end{aligned}
$$

Relationship with Markov processes

$$
\begin{aligned}
& (t+1) \cdot \bar{x}_{i, j, k}(t+1)=t \cdot \bar{x}_{i, j, k}(t) \\
& +\frac{(1-\gamma)}{1+\alpha \delta_{\text {in }}}\left(\left(i+k-1+\delta_{\text {in }}\right) \cdot \bar{x}_{i-1, j, k}(t)-\left(i+k+\delta_{\text {in }}\right) \cdot \bar{x}_{i, j, k}(t)\right) \\
& +\frac{(1-\gamma)(1-\alpha)}{1+\alpha \delta_{\text {out }}}\left(\left(j+k-1+\delta_{\text {out }}\right) \cdot \bar{x}_{i, j-1, k}(t)-\left(j+k+\delta_{\text {out }}\right) \cdot \bar{x}_{i, j, k}(t)\right) \\
& +\frac{\gamma(2-\alpha)}{1+\alpha \delta_{\text {out }}}\left(\left(j+k-1+\delta_{\text {out }}\right) \cdot \bar{x}_{i, j-1, k}(t)-\left(j+k+\delta_{\text {out }}\right) \cdot \bar{x}_{i, j, k}(t)\right) \\
& +t^{-\mathcal{O}(1)}
\end{aligned}
$$

transitions

- $(i, j, k) \rightarrow(i+1, j, k)$ with rate $\frac{(1-\gamma)}{1+\alpha \delta_{\text {in }}}\left(i+k+\delta_{\text {in }}\right)$
- $(i, j, k) \rightarrow(i, j+1, k)$ with rate $\frac{(1-\gamma)(1-\alpha)}{1+\alpha \delta_{\text {out }}}\left(j+k+\delta_{\text {out }}\right)$
- $(i, j, k) \rightarrow(i, j, k+1)$ with rate $\frac{\gamma(2-\alpha)}{1+\alpha \delta_{\text {out }}}\left(j+k+\delta_{\text {out }}\right)$
rebirth process (new nodes)

Main tool

$\vec{X}(t)=\left(x_{i, j, k}(t)\right)_{i, j, k}$
Q rate matrix

$$
(t+1) \cdot[\vec{X}(t+1)-\vec{X}(t)]=Q \cdot \vec{X}(t)+\vec{o}\left(t^{-\mathcal{O}(1)}\right)
$$

Theorem

If the Markov process admits a stationary distribution Π then a.a.s. $\vec{X}(t) \rightarrow \Pi$

Sketch of proof

$$
(t+1) \cdot[\vec{X}(t+1)-\vec{X}(t)]=Q \cdot \vec{X}(t)+\vec{o}\left(t^{-\mathcal{O}(1)}\right)
$$

continuum theory [Barabási-Bianconi,'00]

Reinterpret:

$$
[\vec{X}(t+1)-\vec{X}(t)]=\frac{1}{(t+1)-t} \cdot[\vec{X}(t+1)-\vec{X}(t)]
$$

As:

$$
\frac{d(\vec{X}(t))}{d t}
$$

Sketch of proof (cont'd)

$$
(t+1) \cdot \frac{d(\vec{X}(t))}{d t}=Q \cdot \vec{X}(t)
$$

$P_{Q}(t)=\operatorname{Pr}[$ in state (i, j, k) at time $t]$

$$
\begin{gathered}
\left\{\begin{array}{l}
\frac{d\left(P_{Q}(t)\right.}{d t}=Q \cdot P_{Q}(t) \\
P_{Q}(t) \rightarrow \Pi
\end{array}\right. \\
\vec{X}(\mathbf{t})=\mathbf{P}_{\mathbf{Q}}(\ln (\mathbf{t}+\mathbf{1})) \rightarrow \boldsymbol{\Pi}
\end{gathered}
$$

Applications to Preferential attachment models

- 1-dimensional (undirected graphs)

Ex: Chung-Lu model.

$$
(f(i+1)+1) S_{i+1}=f(i) S(i)
$$

- Existence of stationnary distribution: $\sum_{j} \frac{1}{f(j)}$ diverges;
- if $F(i)=\int^{i} d t / f(t)$ then:

$$
S_{i}=\Theta(\exp [-F(i)] / f(i))
$$

- 2-dimensional (directed graphs) \longrightarrow exact closed-form formula Bollobás et al.
- 3-dimensional (our case): reduction to 2-dimensional case

Conclusion

- First study of the degree(s) distribution on Twitter
- Design and Analysis of a new random digraph model
- Automation through Markov processes

Perspectives

On-going work!

- New applications of our approach ?
- Extend study to other properties of Twitter ?

Mersi!

Intrebare

