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Ponziani
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Introducing myself

• PhD in Computer Science (Sept. 2014 – Dec. 2016)

”Metric Properties of Large Graphs”

under the guidance of David Coudert

team-project COATI (Université Côte d’Azur, Inria, CNRS, I3S, France)

• Research visits here and there

Columbia University, New York (with Prof. Chaintreau and Geambasu)

Universidad Adolfo Ibañez and Universidad de Chile, Santiago.
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Some motivations for my research
Scalability in Network Algorithms

Growing size of communication networks

Social networks (Facebook ≥ 1.79 billion users)

Data Centers (Microsoft ≥ 1 million servers)

the Internet (≥ 55811 Autonomous Systems)

“Efficient” algorithms on these graphs?

polynomial → quasi-linear time
quadratic → (sub)linear space

need for revisiting textbook (polynomial) graph algorithms
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Some motivations for my research (cont’d)
Privacy in Network Algorithms

Raise of privacy concerns online

Online discrimination (Machine Learning,
heuristics)

Violation of data policies (ex: Google App
Education)

differential privacy: preventing data leakage

Web’s transparency: monitoring data use
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Research topics
Information propagation in networks =⇒ combinatorial problems on graphs

Finer-grained complexity analysis of graph problems

NP-hardness, complexity in P, parallel complexity, query complexity, . . .

Metric tree-likeness in graphs

(with COATI team)

Study of geometric properties of the (shortest) path distribution

Computation of related parameters (hyperbolicity, treelength,

treebreadth, treewidth)
algorithmic graph theory

Privacy at large scale in social graphs

(with Social Networks lab, Columbia)

Solution concepts for dynamics of communities

Ad Targeting Identification
game and learning theory
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Online Social Networks

6 / 42



Reasons for studying OSNs

Increasing social activity

(source: Go-Gulf.com, 2012)

Real-life applications:

sociology

statistics

economy, advertising

privacy

Graph theoretical framework
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In this talk: focus on Twitter

∼ 100M login/day

in the Top 10 most visited websites

3rd largest social media (?)
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Objectives

Design and Analysis of a Random graph model for Twitter

Some motivations:

better knowledge of the structure

predictive studies

Simulation + Testing for algorithms
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Related work: experiments on Twitter (1/2)

Conversation graph vs. Graph of the followers
[Cogan et al., Reconstruction and analysis of Twitter conversation graphs, ’12]

In this talk: graph of the followers

Unidirectional relationships (“I’m
interested in you”)

Follower: A follows B;

Following: C is followed by B;

Bidirectional: B and D follow each
other.
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Related work: experiments on Twitter (2/2)
[Gabielkov et al.,’14]

• ”Full” graph obtained by crawling

−→ 505 million accounts interconnected by 23 billion links!

• ”Macro structure” (dec. in strongly connected components)

LSC: 51% of users, 97% of following, 98% of followers.
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Related work: undirected random model for networks

• Erdös-Rényi: “typical” graph
each edge independently with probability p

• Preferential attachment paradigm: ”the rich gets richer”

- growing network (node + edge events)

- probability for a user to increase her degree is proportional to her current
degree

[Barábasi-Albert, Bianconi-Barábasi, Watts-Strogatz, Chung-Lu, Krioukov et al., . . . ]

Power-law:
Prv [deg(v) = k] = Θ(k−a)
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Related work: directed random model for networks

Few existing models and studies for digraphs

”directed Barábasi-Albert” (node event + m outgoing arcs)

Bollobás et al.: node events + 2 types of arc events (ingoing or
outgoing arc)
Remark: much more difficult to analyse!

RMAT [Chakrabarti et al., ’04]: fixed number of vertices and works with
adjacency matrices
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Our results

• An experimental study of the degree(s) distribution in the Twitter graph

• Design of a new random digraph model

• Analysis of the model

experimental (comparisons with Twitter)

theoretical: new techniques based on Markov processes
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Experiments on the Twitter graph (1/4)

Degree(s) distribution in the LSC

In-degree, Out-degree, Bidirectional follow Power-law distribution

in-degree out-degree bidirectional
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Experiments on the Twitter graph (2/4)

Linear correlations ? (Pearson’s coefficient)

no OUT-IN correlation

Pearson coefficient ∼ 0.1488
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Experiments on the Twitter graph (3/4)

Linear correlations ? (Pearson’s coefficient)

no IN-BI correlation

Pearson coefficient ∼ 0.1467
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Experiments on the Twitter graph (4/4)

Linear correlations ? (Pearson’s coefficient)

strong OUT-BI correlation

Pearson coefficient ∼ 0.9556
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Limitations of existing models

Experiments vs. Bollobás et al. model

• The number of bidirectional arcs is high (theory predicts it should
drop to zero)

• Strong positive correlation between out-degree and bidirectional degree
(degrees should be ”almost independent”)

=⇒ need for a new model that better accounts the specificities of
Twitter
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Modelling: first attempt

Problem: number of bidirectional arcs is non vanishing (it should tend to
zero)

Proposed solution: merge a directed random model with an undirected
random model

undirected edges ←→ bidirectional arcs

Issue: no correlation between out-degree and bidirectional degree !!
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Modelling: second attempt

Modify [Bollobás et al., ’03] for our needs.

1) initial digraph D(t0);

2) iterate, for every time step t ≥ t0:

addition of a new vertex with probability α (outgoing arc);

addition of a new arc with probability 1− α;

the new arc is bidirectional with probability γ.
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Examples

Initial digraph D(t0)
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Examples

(A) Node event
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Examples

(A) Node event: add an out-going arc (with tail chosen w.r.t out-degree)
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Examples

New digraph D(t0 + 1).
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Examples

(B) Node event
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Examples

(B) Node event: add a bidirectional arc (with 2nd end chosen w.r.t
out-degree)
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Examples

New digraph D(t0 + 2).
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Examples

(C) Arc event: choose head w.r.t. in-degree
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Examples

(C) Arc event: choose tail w.r.t. out-degree
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Examples

(D) Arc event: choose ends w.r.t. out-degree
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Degree Analysis

Computation of xi ,j ,k(t) = number of vertices, at the time step t ≥ t0,
with:

in-degree i + k ;

out-degree j + k;

bi-degree k.

Exact ? Asymptotic ?
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Old school computations

borrow from [Bollobás et al, ’03].

recurrence equation:

E[xi ,j ,k(t + 1) | D(t)] = xi ,j ,k(t)

+
(1− γ)

e(t) + δin · n(t)
((i + k − 1 + δin) · xi−1,j ,k(t)− (i + k + δin) · xi ,j ,k(t))

+
(1− γ)(1− α)

e(t) + δout · n(t)
((j + k − 1 + δout) · xi ,j−1,k(t)− (j + k + δout) · xi ,j ,k(t))

+
γ(2− α)

e(t) + δout · n(t)
((j + k − 1 + δout) · xi ,j−1,k(t)− (j + k + δout) · xi ,j ,k(t))

e(t) = t, n(t) = Θ(t) (Chernoff )
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Old school computations (cont’d)

borrow from [Bollobás et al, ’03].

Case i →∞, j , k fixed

by triple induction on i , j , k:

xi ,j ,k(t)/t = Θj ,k(i
−
(
1+ 1

c1
+(1+δout)(

c2+c3
c1

)
)

)

Analysis fails in the other cases!
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Relationship with Markov processes

(t + 1) · x̄i ,j ,k(t + 1) = t · x̄i ,j ,k(t)

+
(1− γ)

1 + αδin
((i + k − 1 + δin) · x̄i−1,j ,k(t)− (i + k + δin) · x̄i ,j ,k(t))

+
(1− γ)(1− α)

1 + αδout
((j + k − 1 + δout) · x̄i ,j−1,k(t)− (j + k + δout) · x̄i ,j ,k(t))

+
γ(2− α)

1 + αδout
((j + k − 1 + δout) · x̄i ,j−1,k(t)− (j + k + δout) · x̄i ,j ,k(t))

+t−O(1)

transitions

(i , j , k)→ (i + 1, j , k) with rate (1−γ)
1+αδin

(i + k + δin)

(i , j , k)→ (i , j + 1, k) with rate (1−γ)(1−α)
1+αδout

(j + k + δout)

(i , j , k)→ (i , j , k + 1) with rate γ(2−α)
1+αδout

(j + k + δout)

rebirth process (new nodes)
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Main tool

−→
X (t) = (xi ,j ,k(t))i ,j ,k
Q rate matrix

(t + 1) · [
−→
X (t + 1)−

−→
X (t)] = Q ·

−→
X (t) +−→o (t−O(1))

Theorem

If the Markov process admits a stationary distribution Π then a.a.s.−→
X (t)→ Π
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Sketch of proof

(t + 1) · [
−→
X (t + 1)−

−→
X (t)] = Q ·

−→
X (t) +−→o (t−O(1))

continuum theory [Barabási-Bianconi,’00]

Reinterpret:

[
−→
X (t + 1)−

−→
X (t)] =

1

(t + 1)− t
· [
−→
X (t + 1)−

−→
X (t)]

As:

d(
−→
X (t))

dt
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Sketch of proof (cont’d)

(t + 1) · d(
−→
X (t))

dt
= Q ·

−→
X (t)

PQ(t) = Pr [ in state (i , j , k) at time t]

{
d(PQ(t)

dt = Q · PQ(t)

PQ(t)→ Π

−→
X (t) = PQ(ln(t + 1))→ Π
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Applications to Preferential attachment models

• 1-dimensional (undirected graphs)
Ex: Chung-Lu model.

(f (i + 1) + 1)Si+1 = f (i)S(i)

- Existence of stationnary distribution:
∑

j
1

f (j) diverges;

- if F (i) =
∫ i

dt/f (t) then:
Si = Θ(exp[−F (i)]/f (i))

• 2-dimensional (directed graphs) −→ exact closed-form formula
Bollobás et al.

• 3-dimensional (our case): reduction to 2-dimensional case
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Conclusion

• First study of the degree(s) distribution on Twitter

• Design and Analysis of a new random digraph model

• Automation through Markov processes
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Perspectives

On-going work !

• New applications of our approach ?

• Extend study to other properties of Twitter ?
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Mersi!
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